Transformative impact of artificial intelligence on mathematical reasoning
Implications, advances, and challenges
Keywords:
artificial intelligence, mathematical reasoning, automated theorem proving, mathematical epistemology, machine learningAbstract
This article explores the growing impact of Artificial Intelligence (AI) on mathematical reasoning, with emphasis on its progress, limitations and epistemological projections. It examines how AI, through computational models and techniques such as machine learning, automatic theorem proving and optimization using evolutionary algorithms, has achieved significant levels of autonomy in solving complex mathematical problems. Historically, from the Turing Machine to today's neural networks, AI has contributed to remarkable advances, including solving problems in representation theory and diophantine equations. However, fundamental challenges remain: AI lacks deep conceptual understanding, has difficulties in generalization, and relies heavily on data, which compromises transparency and rigor in deductive processes. The article highlights the need to develop symbolic and intuitive capabilities in intelligent systems, and further reasoning. Finally, it proposes a collaborative vision between human intelligence and AI, where the latter acts as a catalyst for mathematical thinking, without replacing its creative dimension. The research emphasizes that the ethical and critical development of AI is essential, recognizing mathematics not only as a beneficiary, but also as the structural foundation of AI.
References
Díaz, M. & Rojas, F. (2019). Diseño de entornos de aprendizaje personalizados con inteligencia artificial en educación superior. Revista de Educación a Distancia.
Doe, R. & Tanaka, M. (2020). Automatización en la demostración matemática. Journal of Computational Mathematics, 15(2), 38-45.
Frey, C. & Osborne, M. (2017). The future of employment: ¿How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254-280. The future of employment: How susceptible are jobs to computerisation?
González, M. & Pérez, J. (2023). Colaboración humano-IA en las matemáticas del futuro. Journal of Mathematical Innovation, 18(4), 110-115.
Harrison, T. & White, S. (2022). Desafíos éticos de la inteligencia artificial en la investigación matemática. International Journal of Ethical AI, 9(1), 90-105.
Lee, H., Zhang, P. & Chang, L. (2019). Redes neuronales y su aplicación en la resolución de problemas matemáticos complejos. Advances in AI Research, 27(3), 120-135.
Martínez, J. C. (1996). Fundamentos de demostración automática de teoremas. Universitat de Barcelona. https://hdl.handle.net/2445/152102
Martínez, J. & Ruiz, P. (2021). Impacto de la inteligencia artificial en la enseñanza y aprendizaje de las matemáticas. Educación y Nuevas Tecnologías.
McCulloch, W. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115–133.
Mucci, Tim. (21 de octubre de 2024). La historia de la inteligencia artificial. IBM. https://www.ibm.com/es-es/think/topics/history-of-artificial-intelligence
Pérez, M., González, L. & Hernández, S. (2019). Aplicaciones del aprendizaje automático en el Análisis Estadístico de Grandes Volúmenes de Datos. Revista Ciencia y Tecnología de la Información.
Russell, S. & Norvig, P. (2020). Artificial intelligence: A modern approach. (4th ed.). Pearson.
Smith, J. (2021). La inteligencia artificial en la matemática moderna. Revista de Matemáticas Avanzadas, 12(4), 85-100.
Soler, A. & Rosales, F. (2021). Optimización de Modelos Matemáticos Mediante Técnicas de Aprendizaje Profundo. Revista de Computación Avanzada.
Tegmark, M. (2017). Vida 3.0: Ser humano en la era de la inteligencia artificial. España, Barcelona: Taurus Taurus.
Chervonyi, Y., Trinh, T.H., Olšák, M., Yang, X., Nguyen, H., Menegali, M., Jung, J., Verma,V. Le, Q. V. & Luong, T. (2024). Gold-medalist Performance in Solving Olympiad Geometry with AlphaGeometry2. ArXiv. https://doi.org/10.48550/arXiv.2502.03544
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q. & Zhou, D. (2022). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Advances in Neural Information Processing Systems, 35, 24824-24837. https://doi.org/10.48550/arXiv.2201.11903