Secret of prime numbers and the Goldbach Conjecture
Keywords:
prime numbers, compound numbers, arithmetic progressions, Goldbach's conjecture, even numbersAbstract
This paper presents an empirical study of a theorem about prime numbers that is little studied: "Every prime number greater than 3 equals a multiple of 6 increased or decreased by one unit." This long-proven theorem indicates that prime numbers can be written as 6K-1 or 6K+1, with k a positive integer, but there are many K-values for both forms that do not generate prime numbers. This research focuses on the characteristics or patterns of these K-values that do not generate prime numbers for the two forms. The research shows that these values of K are infinite arithmetic progressions whose ratios are smaller prime numbers. This discovery allows the generalization of prime numbers through a sieve with the constraints of the values of K; and in turn, it is possible to prove the Goldbach Conjecture ("every even number greater than 2 can be written as the sum of two prime numbers") with simplicity of calculations and to deduce three corollaries from the same values of k are infinite arithmetic progressions whose ratios are smaller prime numbers. This discovery allows the generalization of prime numbers through a sieve with the constraints of the values of k; and in turn, it is possible to prove the Goldbach Conjecture ("every even number greater than 2 can be written as the sum of two prime numbers") with simplicity of calculations and to deduce three corollaries from the same.
Downloads
References
Apostol, T. ( 1984) Introducción a la teoría analítica de los números. Editorial Reverté. Caracas. Venezuela.
Baldor, A. (1944). Aritmética teórico-practica. Habana , Cuba : Cultural,SA.
Castellano, Z (2022) Criba eficiente secuencia de raíz digital tesla Zollner números primos y compuestos. TECSZOLL. C.A. Valencia Venezuela. https://www.researchgate.net/publication/364039609_TEST_DE_PRIMALIDAD_DE_SECUENCIA_PRIMORDIAL_TESLA_ZOLLNER_NUMEROS_PRIMOS_Y_COMPUESTOS
Guevara Bravo, J. César y Ojeda Uresti, Juan. (2006). ¿Formuló Goldbach la conjetura de Goldbach? Ciencias 81, enero-marzo, 72-79. https://www.revistacienciasunam.com/es/54-revistas/revista-ciencias-81/349-iformulo-goldbach-la-conjetura-de-goldbach-.html
Granville A. y Martin G. (2005). Carrera de números primos. El diablo de los números. LA GACETA DE LA RSME, 8(1), 197–240.
https://matematicas.uam.es/~franciscojavier.cilleruelo/Curso/Carreras.pdf (Posible: Revisar)
Mora, W. (2010) Introducción a la teoría de números. Ejemplos y algoritmos. Revista digital Matemática Educación e Internet. Segunda Edición. Costa Rica. www.tec-digital.itcr.ac.cr/revistamatematica/
Niven, I. y Zuckerman, H. (1976) Introducción a la teoría de los números. Editorial Limusa . México
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nórgida Lina Fermín Alfonzo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.















