Secret of prime numbers and the Goldbach Conjecture

Authors

Keywords:

prime numbers, compound numbers, arithmetic progressions, Goldbach's conjecture, even numbers

Abstract

This paper presents an empirical study of a theorem about prime numbers that is little studied: "Every prime number greater than 3 equals a multiple of 6 increased or decreased by one unit." This long-proven theorem indicates that prime numbers can be written as 6K-1 or 6K+1, with k a positive integer, but there are many K-values for both forms that do not generate prime numbers. This research focuses on the characteristics or patterns of these K-values that do not generate prime numbers for the two forms. The research shows that these values of K are infinite arithmetic progressions whose ratios are smaller prime numbers. This discovery allows the generalization of prime numbers through a sieve with the constraints of the values of K; and in turn, it is possible to prove the Goldbach Conjecture ("every even number greater than 2 can be written as the sum of two prime numbers") with simplicity of calculations and to deduce three corollaries from the same values of k are infinite arithmetic progressions whose ratios are smaller prime numbers. This discovery allows the generalization of prime numbers through a sieve with the constraints of the values of k; and in turn, it is possible to prove the Goldbach Conjecture ("every even number greater than 2 can be written as the sum of two prime numbers") with simplicity of calculations and to deduce three corollaries from the same.

Downloads

Download data is not yet available.

Author Biography

Nórgida Lina Fermín Alfonzo, Instituto Vocacional de Venezuela

Profesora de Matemática en el CE Instituto Vocacional de Venezuela. Instituto universitario adventista de Venezuela. Nirgua/ Yaracuy.

References

Apostol, T. ( 1984) Introducción a la teoría analítica de los números. Editorial Reverté. Caracas. Venezuela.

Baldor, A. (1944). Aritmética teórico-practica. Habana , Cuba : Cultural,SA.

Castellano, Z (2022) Criba eficiente secuencia de raíz digital tesla Zollner números primos y compuestos. TECSZOLL. C.A. Valencia Venezuela. https://www.researchgate.net/publication/364039609_TEST_DE_PRIMALIDAD_DE_SECUENCIA_PRIMORDIAL_TESLA_ZOLLNER_NUMEROS_PRIMOS_Y_COMPUESTOS

Guevara Bravo, J. César y Ojeda Uresti, Juan. (2006). ¿Formuló Goldbach la conjetura de Goldbach? Ciencias 81, enero-marzo, 72-79. https://www.revistacienciasunam.com/es/54-revistas/revista-ciencias-81/349-iformulo-goldbach-la-conjetura-de-goldbach-.html

Granville A. y Martin G. (2005). Carrera de números primos. El diablo de los números. LA GACETA DE LA RSME, 8(1), 197–240.

https://matematicas.uam.es/~franciscojavier.cilleruelo/Curso/Carreras.pdf (Posible: Revisar)

Mora, W. (2010) Introducción a la teoría de números. Ejemplos y algoritmos. Revista digital Matemática Educación e Internet. Segunda Edición. Costa Rica. www.tec-digital.itcr.ac.cr/revistamatematica/

Niven, I. y Zuckerman, H. (1976) Introducción a la teoría de los números. Editorial Limusa . México

Published

2025-12-08

How to Cite

Fermín Alfonzo, N. L. (2025). Secret of prime numbers and the Goldbach Conjecture. Revista Honoris Causa, 17(2), 120–142. Retrieved from https://revista.uny.edu.ve/ojs/index.php/honoris-causa/article/view/636

Issue

Section

Scientific articles